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Matters arising

Phantom epistasis between unlinked loci
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Statistical evidence for genetic interactions1 (epistasis) involving loci 
that are unlinked can be attenuated by fine-mapping additive effects 
at one of the interacting loci2, but the reason for this has remained 
unclear3. Here we show, using theory, simulation and data on the 501 
genetic interactions we previously reported1 to influence gene expres-
sion, a previously unrecognized property of the gold-standard statisti-
cal test to detect interactions, namely that the presence of imperfectly 
tagged additive causal variants can lead to phantom epistasis between 
unlinked markers. Therefore, the false positive rate in studies that use 
the test may not be sufficiently controlled and, to our knowledge, no 
current statistical fix exists for this problem.

In Hemani et al.1 we applied a four degree-of-freedom linear model 
test for each pairwise combination of 528,509 genotyped autosomal 
single nucleotide polymorphisms (SNPs), for each of 7,339 gene expres-
sion levels in whole blood. The statistical test attempted to capture any 
joint effect of two independent variants that was not explained by the 
marginal additive or dominance effect of either of the variants4. Here 
the additive by additive, additive by dominance, dominance by addi-
tive and dominance by dominance terms are jointly assessed in the 
interaction term. This effect decomposition is fundamental to basic 
quantitative genetic theory5, and has been used routinely in the link-
age study era and the genome-wide association study (GWAS) era6–8. 
The level of epistasis can be tested for statistical significance using an 
F-test with 4, n − 9 degrees of freedom, in which n is the experimental 
sample size, assuming individuals are present in all pairwise genotype 
classes. A simpler variation is to parameterise the interaction term to 
include only the additive by additive term, and what follows in this 
paper applies to that approach also (Supplementary Note 1). Our 
analysis, on 846 individuals, yielded 501 pairwise interactions that sur-
passed a family-wise significance threshold of P < 2.31 × 10−16 (hereafter 
referred to as the H2014 interactions). Most of these interactions were 
long-range ‘cis-trans’ associations, in which one interacting variant was 
close to the gene whose expression level was influenced, and the other 
interacting variant was on a different chromosome. In two independent 
datasets, together comprising 2,131 individuals, 30 of these interactions 
replicated at a Bonferroni multiple testing correction (P < 0.05/501).

Soon after publication, these findings were further statistically 
replicated in an independent dataset by Wood et al.2. However, after 
including fine-mapped sequenced additive effects as covariates in the 
interaction models, they found that most of the interaction effects 
substantially attenuated. We subsequently found a similar attenuation 

of effects in the original data by using fine-mapped imputed additive 
effects as covariates3. This exchange raised the question of why a stand-
ard method of analysis was giving rise to changeable results, which we 
explore here.

Wood et al.2 interpreted the original discovery interactions as 
so-called haplotype effects, a well-understood mechanism by which 
two loci can appear epistatic but be due to a simple additive effect. That 
is, the observed loci flank a causal variant and are in incomplete link-
age disequilibrium with each other and the causal variant; a statistical 
interaction between the observed loci can capture more of the addi-
tive variance of the causal variant than the marginal additive effects 
of both the observed loci combined. The haplotype effect model has 
subsequently been explored in more detail9. However, this explanation 
is not plausible for most of the H2014 signals that were cis–trans interac-
tions, in which the two interacting loci are on different chromosomes.

Analysis
If the test statistic for a long-range interaction term can be attenu-
ated with the inclusion of a single additive term, this indicates that 
the interaction test statistic is inflated under the null hypothesis of 
no epistasis. To explore this assumption, we began by estimating the 
genomic inflation factor for each of the 501 H2014 signals, which is a 
measure of the extent to which a family of test statistics departs from 
its distribution. In each case, we ran a genome-wide analysis in which 
we performed a genome-wide interaction test of the detected cis-SNP 
against every other SNP excluding those on the cis chromosome. The 
genomic inflation factor was then calculated for the genome-wide 
interaction test statistics (Supplementary Methods). Some loci have no 
obvious genomic inflation, whereas for many loci the inflation factor is 
much larger than that expected under the null (Supplementary Fig. 1). 
This is consistent with the idea that for many of the loci the test statistics 
are inflated. There are other possible explanations that could give rise 
to high genomic inflation factors, such as an epistatic polygenic com-
ponent, although this is unlikely given the discovery sample size10, and 
the simplest interpretation here is that the F-statistics depart from the 
null distribution in a way that signifies a problem with the data context.

We explored the theoretical mechanism by which the classic interac-
tion test statistic can be inflated when only one of the interaction vari-
ants is in linkage disequilibrium with a causal additive variant, which 
mimics the cis–trans interactions that form most of the H2014 signals. 
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Reducing the problem to a simplified scenario in which individuals 
are haploid and the additive genetic effects explain all the phenotypic 
variance, we find that the residuals from a linear model are a mixture 
of normal and binomial distributions (Supplementary Note 2). This 
leads to systematic inflation or deflation of the F-statistic. We also 
show that as the effect of the unobserved additive variant gets larger, 
a larger proportion of variance of the residuals arises from the binomial 
distribution. Under this model we show that both the mean and the 
variance of the expected F value from the classical interaction model 
are increased. This mechanism is entirely separate from the sources of 
test statistic inflation that have been previously suggested.

Following this finding, we used simulations to explore the behaviour 
of the test statistic in the diploid context with cis-acting additive effect 
sizes that attempt to mimic the H2014 signals (Supplementary Meth-
ods). We began by recreating the conditions within the MBNL1 locus, in 
which 11 independent cis–trans associations were originally discovered, 
5 of which were replicated at the Bonferroni level (Supplementary Note 
3). These simulations show that the genomic inflation factor relates 
strongly to the variance explained by the additive causal effect (Sup-
plementary Fig. 2), and that as genomic inflation grows, the number 
of false positive interactions grows (Supplementary Fig. 3). We also 
observe that it is possible to obtain several false discovery signals per 
simulation even when the genomic inflation factor is low. This is con-
sistent with the variance of the test statistic being inflated as predicted 
from our theory (Supplementary Note 2). Extending these simulations 
to other loci among the H2014 signals resulted in less inflation and 
lower false discovery rates because we are no longer ascertaining for 
a locus that is known to have high inflation and high replication rates.

We extended the simulations to evaluate the effect of the test statistic 
inflation on replication rates of type 1 errors from the discovery sample 
(Supplementary Note 4). We observed that the genomic inflation factor 
between independent discovery and replication datasets tends to be 
strongly correlated (Supplementary Fig. 4). However, if the discovery 
had a significant interaction owing to inflation of the test statistic, they 
were seldom independently replicated at the Bonferroni threshold, 
even at the MBNL1 locus, which showed a relatively high replication 
rate in the original study (Supplementary Fig. 5). We also found that 
the sign of the most significant interaction term was not likely to be 
replicated more than chance (P = 0.83), in contrast to the H2014 signals 
originally reported.

The implied solution to avoiding the interaction test statistic inflation 
is to control for the fine-mapped cis-additive expression quantitative 
trait loci (eQTLs). However, this may not reliably control the type 1 
error rate under at least two scenarios. First, we explored the effect of 
measurement error in the cis additive causal variant (Supplementary 
Note 5). We found that imperfectly adjusting for the additive effect due 
to realistic levels of imputation error at the cis additive causal variant led 
to poor control of the genomic inflation factor (Supplementary Figs. 6, 
7). Second, we evaluated the influence of additive effect heterogeneity 
on the interaction test statistic inflation (Supplementary Note 6). Here, 
the additive causal variant is simulated to have varying effects across 
individuals, and when estimating its average effect in the population 
its variance is only partially captured. The test statistic inflation will not 
be fully controlled by fitting the additive effect as a covariate, even if 
the additive variant is sequenced without error (Supplementary Fig. 8).

There is a long history of problems arising in genetic analysis owing 
to the interaction between statistical tests and background genetic 
architecture being poorly understood or experimental design being 
misaligned11,12. In the case of the F-statistic used for detecting epista-
sis, the problem of inflation that we describe here arises owing to two 
forces. First, when there is imperfect linkage disequilibrium between 
causal variant with large additive effect size and a tagging locus nearby, 
the mean and the variance of the test statistic for interaction terms of 
the tagging locus will be inflated. Second, a broad search for epistasis, 
in which strict significance thresholds are applied, is liable to ascertain 

for loci with large additive effects and specific linkage disequilibrium 
properties that maximize the interaction test statistic inflation.

Going forwards, adjusting for fine-mapped additive effects should 
be done routinely when testing for interactions, as in many situations 
it will attenuate the test statistic inflation described here. Per locus 
permutation testing strategies will be difficult to apply at scale, but 
could serve as a post-discovery sensitivity analysis, although their 
interpretation is unlikely to be straightforward (Supplementary Fig. 
9). If there is no large additive effect, as is the case with most complex 
traits and for most trans regions of ’omic variables, then the problem 
of the residual being a mixture of binomial and normal distributions 
is unlikely to be substantial.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-021-03765-z.

Data availability
The gene expression data used to generate the original H2014 paper is 
available at the Gene Expression Omnibus (GEO) under accession code 
GSE53195. The ALSPAC genotype data can be accessed via http://www.
bristol.ac.uk/alspac/. This study makes use of data from dbGaP (acces-
sions phs000428.v1.p1) and EGA (accessions EGAS00001000108 and 
EGAS00001000090) (see Supplementary Information for a full list of 
acknowledgements to these datasets).

Code availability
Code is available at: https://github.com/explodecomputer/eqtl-2d.
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